J-Orthogonal Matrices: Properties and Generation
نویسنده
چکیده
A real, square matrix Q is J-orthogonal if Q JQ = J , where the signature matrix J = diag(±1). J-orthogonal matrices arise in the analysis and numerical solution of various matrix problems involving indefinite inner products, including, in particular, the downdating of Cholesky factorizations. We present techniques and tools useful in the analysis, application and construction of these matrices, giving a self-contained treatment that provides new insights. First, we define and explore the properties of the exchange operator, which maps J-orthogonal matrices to orthogonal matrices and vice versa. Then we show how the exchange operator can be used to obtain a hyperbolic CS decomposition of a J-orthogonal matrix directly from the usual CS decomposition of an orthogonal matrix. We employ the decomposition to derive an algorithm for constructing random J-orthogonal matrices with specified norm and condition number. We also give a short proof of the fact that J-orthogonal matrices are optimally scaled under two-sided diagonal scalings. We introduce the indefinite polar decomposition and investigate two iterations for computing the J-orthogonal polar factor: a Newton iteration involving only matrix inversion and a Schulz iteration involving only matrix multiplication. We show that these iterations can be used to J-orthogonalize a matrix that is not too far from being J-orthogonal.
منابع مشابه
On the optimal correction of inconsistent matrix equations $AX = B$ and $XC = D$ with orthogonal constraint
This work focuses on the correction of both the coecient and the right hand side matrices of the inconsistent matrix equations $AX = B$ and $XC = D$ with orthogonal constraint. By optimal correction approach, a general representation of the orthogonal solution is obtained. This method is tested on two examples to show that the optimal correction is eective and highly accurate.
متن کاملOn Orthogonalities in Matrices
In this paper we have discussed different possible orthogonalities in matrices, namely orthogonal, quasiorthogonal, semi-orthogonal and non-orthogonal matrices including completely positive matrices, while giving some of their constructions besides studying some of their properties.
متن کاملExtending Results from Orthogonal Matrices to the Class of P -orthogonal Matrices
We extend results concerning orthogonal matrices to a more general class of matrices that will be called P -orthogonal. This is a large class of matrices that includes, for instance, orthogonal and symplectic matrices as particular cases. We study the elementary properties of P -orthogonal matrices and give some exponential representations. The role of these matrices in matrix decompositions, w...
متن کاملFurther results on ternary complementary sequences, orthogonal designs and weighing matrices
A set of sequences is complementary, if the sum of their periodic or nonperiodic autocorrelation function is zero. Infinite families of orthogonal designs, based on some weighing matrices of order 2n, weight 2n− k and spread σ, are constructed from two circulants matrices by using complementary sequences of zero non-periodic autocorrelation function, i.e. ternary complementary pairs. Moreover, ...
متن کاملFurther properties of a pair of orthogonal projectors
Representing two orthogonal projectors on a finite dimensional vector spaces (i.e., Hermitian idempotent matrices) as partitioned matrices turns out to be very powerful tool in considering properties of such a pair. The usefulness of this representation is discussed and several new characterizations of a pair of orthogonal projectors are provided, with particular attention paid to the spectral ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Review
دوره 45 شماره
صفحات -
تاریخ انتشار 2003